Remote Sensing Time Series Analysis with Moderate Spatial Resolution Imagery I

Type: Paper
Sponsor Groups: Remote Sensing Specialty Group, Geographic Information Science and Systems Specialty Group
Poster #:
Day: 4/11/2018
Start / End Time: 1:20 PM / 3:00 PM
Room: Iberville, Marriott, River Tower Elevators, 4th Floor
Organizers: Chunyuan Diao, Zhe Zhu, Chengbin Deng
Chairs: Zhe Zhu


Recent advances in remote sensing have facilitated the use of large volume of satellite imagery for understanding the dynamic natural and human-induced processes. Time series of earth observation data from coarse resolution sensors (e.g., AVHRR, SPOT VGT, and MODIS) set the stage for operational monitoring of land surface dynamics over large geographic regions across time. Recently, a new generation of time series studies using moderate spatial resolution imagery (sub 100-m) opens up opportunities for studying dynamic earth system processes in unparalleled details. In particular, the global Landsat archive acquired over the past four decades has been increasingly explored to improve our scientific understanding of types, trends, causes, and consequences of various dynamic processes. Complemented by Sentinel-2 and other global Landsat-class missions, time series of moderate spatial resolution imagery offers tremendous potentials to conduct near real time monitoring and revolutionize our understanding of complex earth systems. The wealth of information provided by increased temporal frequency, improved spatial resolution, and sheer data volume calls for innovative data analysis algorithms and monitoring strategies.

This session invites papers focusing on both theoretical and methodology research and applications to advance remote sensing time series analysis with moderate spatial resolution imagery.

Potential session topics include, but not limited to:
1) Time series algorithm development (e.g., curve fitting, trend analysis, and prediction)
2) Multi-source image fusion or data integration
3) Time series remote sensing based domain applications (e.g., vegetation phenology, land cover and land use change, land surface biophysical characteristics)
4) Validation and assessment of remotely sensed time series analysis

To present a paper in the session, please (1) register and submit your abstract through AAG, and (2) send your personal identification number (PIN), paper title, and abstract to one of the co-organizers by November 8, 2017.

Chengbin Deng (State University of New York at Binghamton,
Chunyuan Diao (University of Illinois at Urbana-Champaign,
Zhe Zhu (Texas Tech University,


Type Details Minutes Start Time
Presenter Zhe Zhu*, Texas Tech University, Status and Updates of the Continuous Change Detection and Classification (CCDC) Algorithm 20 1:20 PM
Presenter Nicholas Cuba*, Brown University, Multidecadal Landsat Time Series Reveals the Nature and Magnitude of Mining's Impact on Agriculture and Natural Vegetation in the Peruvian Highlands (1986-2011) 20 1:40 PM
Presenter Chunyuan Diao*, University of Illinois at Urbana-Champaign, Le Wang, University at Buffalo, Phenology-guided Composite Image for Monitoring Invasive Species using Landsat Time Series 20 2:00 PM
Presenter Meinan Zhang*, Department of Earth System Science,Tsinghua University, Peng Gong, Department of Earth System Science, Tsinghua University, Mapping woody bamboo by applying a phenology- based algorithm to all Landsat 8 images in Google Earth Engine 20 2:20 PM
Presenter Alex Marden*, University of Texas - Austin, Thoralf Meyer, University of Texas - Austin, Thomas Christiansen, University of Texas - Austin, Drivers, impacts, and feedbacks of woody/grass dynamics and grazing quality in the central Kalahari 20 2:40 PM

To access contact information login