In order to join virtual sessions, you must be registered and logged-in(Were you registered for the in-person meeting in Denver? if yes, just log in.) 
Note: All session times are in Mountain Daylight Time.

Assessing the Impact of Nightlight Gradients on Street Robbery and Burglary in Cincinnati of Ohio State, USA

Authors: Hanlin Zhou*, University of Cincinnati, Lin Liu, University of Cincinnati, Minxuan Lan, University of Cincinnati, Bo Yang, Department of Sociology, University of Central Florida, Orlando, FL 32816, USA, Zengli Wang, Nanjing Forestry University
Topics: Applied Geography
Keywords: Crime; edges; nightlight satellite data; NPP-VIIRS
Session Type: Paper
Presentation File: No File Uploaded

Previous research has recognized the importance of edges to crime. Various scholars have explored how one specific type of edges such as physical edges or social edges affect crime, but rarely investigated the importance of the composite edge effect. To address this gap, this study introduces nightlight data from the Visible Infrared Imaging Radiometer Suite sensor on the Suomi National Polar-orbiting Partnership Satellite (NPP-VIIRS) to measure composite edges. This study defines edges as nightlight gradients—the maximum change of nightlight from a pixel to its neighbors. Using nightlight gradients and other control variables at the tract level, this study applies negative binomial regression models to investigate the effects of edges on the street robbery rate and the burglary rate in Cincinnati. The Akaike Information Criterion (AIC) of models show that nightlight gradients improve the fitness of models of street robbery and burglary. Also, nightlight gradients make a positive impact on the street robbery rate whilst a negative impact on the burglary rate, both of which are statistically significant under the alpha level of 0.05. The different impacts on these two types of crimes may be explained by the nature of crimes and the in-situ characteristics, including nightlight.

To access contact information login